Access the most recent editions of Ink World Magazine, featuring timely industry insights and innovations.
Read the interactive online version of Ink World Magazine, complete with enhanced features and multimedia content.
Join our global readership—subscribe to receive Ink World Magazine in print or digital formats, and stay informed on key trends and breakthroughs.
Connect with decision-makers in the ink industry through strategic advertising opportunities in Ink World Magazine and online platforms.
Review submission standards and guidelines for contributing articles and content to Ink World Magazine.
Understand how we collect, use, and protect your data when you engage with Ink World Magazine.
Review the legal terms governing your use of Ink World Magazines website and services.
Stay current with breaking developments, business updates, and product launches across the global ink industry.
Explore in-depth articles covering key technologies, trends, and challenges facing ink manufacturers and suppliers.
Access exclusive interviews, behind-the-scenes stories, and original reporting not found anywhere else.
A one-on-one interview conducted by our editorial team with industry leaders in our market.
Gain insight from industry thought leaders as they share analysis on market shifts, regulatory changes, and technological advances.
Review market data, forecasts, and trends shaping the ink and printing sectors worldwide.
Visualize data and industry insights through engaging infographics that highlight key stats and trends.
Browse photo galleries showcasing events, product innovations, and company highlights.
Watch interviews, demonstrations, and event coverage from across the ink and printing value chain.
Short, impactful videos offering quick updates and insights on industry topics.
Stay updated on trends and technologies in pigment development.
Learn how additives influence ink performance and characteristics.
Discover advancements in resin technologies and their impact on ink properties.
Explore the latest printing and manufacturing equipment used across various ink applications.
Explore UV, EB, and other curing technologies that improve ink efficiency and sustainability.
Discover tools used in R&D and quality control processes.
Focused on inks used in labels, flexible packaging, and cartons.
Coverage on inks for newspapers, magazines, and books.
Insights into inkjet, toner, and other digital printing solutions.
Updates on offset sheetfed inks used in commercial printing.
News on UV and EB curing inks.
Explore screen printing ink technologies.
Niche and high-performance ink formulations for specific applications.
Electrically conductive inks for electronics and printed sensors.
Innovations in printable electronic components.
Developments in printed OLEDs, LEDs, and display technologies.
Printed solar cells and materials used in energy generation.
Explore electronics printed directly into molded surfaces.
Advances in smart tagging and communication technologies.
Global leaders across Europe, Asia, and beyond.
Major ink producers in the U.S., Canada, and Mexico.
Source suppliers and service providers across the ink value chain.
Locate authorized distributors of ink and raw materials.
Browse manufacturers and vendors offering inks, equipment, and materials.
A listing of ink manufacturers based in the United States.
Directory of ink producers across Europe.
Detailed insights into products, processes, and innovations from leading ink companies.
Find definitions for common terms used throughout the ink and printing industries.
Comprehensive digital guides on specific ink technologies and markets.
Research-driven reports offering analysis and solutions to industry challenges.
Marketing materials from suppliers showcasing products and services.
Company-sponsored articles offering expert insight, case studies, and product highlights.
Company announcements, product launches, and corporate updates.
Browse job openings in the ink and coatings industries and connect with potential employers.
Calendar of major trade shows and professional gatherings.
On-site event coverage and updates.
Virtual sessions led by industry experts.
What are you searching for?
International team of physicists’ innovation could vastly advance wireless communications, computer speed, and aerospace technology.
By James Devitt NYU Managing Director of Public Affairs
Scientists have long sought to make semiconductors—vital components in computer chips and solar cells—that are also superconducting, thereby enhancing their speed and energy efficiency and enabling new quantum technologies. However, achieving superconductivity in semiconductor materials such as silicon and germanium has proved challenging due to difficulty in maintaining an optimal atomic structure with the desired conduction behavior.In a newly published paper in the journal Nature Nanotechnology, an international team of scientists reports producing a form of germanium that is superconducting—able to conduct electricity with zero resistance, which allows currents to flow indefinitely without energy loss, resulting in greater operational speed that requires less energy. “Establishing superconductivity in germanium, which is already widely used in computer chips and fiber optics, can potentially revolutionize scores of consumer products and industrial technologies,” says New York University physicist Javad Shabani, director of NYU’s Center of Quantum Information Physics and the university’s newly established Quantum Institute, one of the paper’s authors. “These materials could underpin future quantum circuits, sensors, and low-power cryogenic electronics, all of which need clean interfaces between superconducting and semiconducting regions,” adds Peter Jacobson, a physicist at the University of Queensland and one of the paper’s authors. “Germanium is already a workhorse material for advanced semiconductor technologies, so by showing it can also become superconducting under controlled growth conditions there’s now potential for scalable, foundry-ready quantum devices.”Semiconductor materials such as germanium and silicon, both diamond-like crystals, are group IV elements, whose electronic behavior straddles that of metals and insulators. These materials are useful in manufacturing because of their flexibility and durability.
Achieving superconductivity in these elements is accomplished by manipulating their structure to introduce numerous conducting electrons. These electrons interact with the germanium crystal to pair with one another and move without resistance—a process that has historically been challenging to control at the atomic level.
In the Nature Nanotechnology work, the scientists created germanium films that were heavily infused with a softer element, gallium, which is also commonly used in electronics. This long-established process, known generically as ‘doping,’ alters a semiconductor’s electrical properties—but at high levels of gallium, typically the material becomes unstable, leading to a breakdown of the crystal and no superconductivity.
However, in the newly reported results, the scientists, using advanced X-ray techniques, demonstrate a new technique, which forces gallium atoms to replace germanium atoms within the crystal at higher-than-normal levels. This process slightly deforms the shape of the crystal, but nonetheless keeps a stable structure that can conduct electricity with zero resistance at 3.5 Kelvin—or approximately -453 degrees Fahrenheit—thereby becoming superconducting.
“Rather than ion implantation, molecular beam epitaxy was used to precisely incorporate gallium atoms into the germanium’s crystal lattice,” notes Julian Steele, a physicist at the University of Queensland and one of the paper’s authors. “Using epitaxy—growing thin crystal layers—means we can finally achieve the structural precision needed to understand and control how superconductivity emerges in these materials.”
“This works because group IV elements don’t naturally superconduct under normal conditions, but modifying their crystal structure enables the formation of electron pairings that allow superconductivity,” observes Shabani.The research, which also included researchers from ETH Zurich and the Ohio State University, was supported, in part, by the US Air Force’s Office of Scientific Research (FA9550-21-1-0338).
Enter the destination URL
Or link to existing content
Enter your account email.
A verification code was sent to your email, Enter the 6-digit code sent to your mail.
Didn't get the code? Check your spam folder or resend code
Set a new password for signing in and accessing your data.
Your Password has been Updated !