Access the most recent editions of Ink World Magazine, featuring timely industry insights and innovations.
Read the interactive online version of Ink World Magazine, complete with enhanced features and multimedia content.
Join our global readership—subscribe to receive Ink World Magazine in print or digital formats, and stay informed on key trends and breakthroughs.
Connect with decision-makers in the ink industry through strategic advertising opportunities in Ink World Magazine and online platforms.
Review submission standards and guidelines for contributing articles and content to Ink World Magazine.
Understand how we collect, use, and protect your data when you engage with Ink World Magazine.
Review the legal terms governing your use of Ink World Magazines website and services.
Stay current with breaking developments, business updates, and product launches across the global ink industry.
Explore in-depth articles covering key technologies, trends, and challenges facing ink manufacturers and suppliers.
Access exclusive interviews, behind-the-scenes stories, and original reporting not found anywhere else.
A one-on-one interview conducted by our editorial team with industry leaders in our market.
Gain insight from industry thought leaders as they share analysis on market shifts, regulatory changes, and technological advances.
Review market data, forecasts, and trends shaping the ink and printing sectors worldwide.
Visualize data and industry insights through engaging infographics that highlight key stats and trends.
Browse photo galleries showcasing events, product innovations, and company highlights.
Watch interviews, demonstrations, and event coverage from across the ink and printing value chain.
Short, impactful videos offering quick updates and insights on industry topics.
Stay updated on trends and technologies in pigment development.
Learn how additives influence ink performance and characteristics.
Discover advancements in resin technologies and their impact on ink properties.
Explore the latest printing and manufacturing equipment used across various ink applications.
Explore UV, EB, and other curing technologies that improve ink efficiency and sustainability.
Discover tools used in R&D and quality control processes.
Focused on inks used in labels, flexible packaging, and cartons.
Coverage on inks for newspapers, magazines, and books.
Insights into inkjet, toner, and other digital printing solutions.
Updates on offset sheetfed inks used in commercial printing.
News on UV and EB curing inks.
Explore screen printing ink technologies.
Niche and high-performance ink formulations for specific applications.
Electrically conductive inks for electronics and printed sensors.
Innovations in printable electronic components.
Developments in printed OLEDs, LEDs, and display technologies.
Printed solar cells and materials used in energy generation.
Explore electronics printed directly into molded surfaces.
Advances in smart tagging and communication technologies.
Global leaders across Europe, Asia, and beyond.
Major ink producers in the U.S., Canada, and Mexico.
Source suppliers and service providers across the ink value chain.
Locate authorized distributors of ink and raw materials.
Browse manufacturers and vendors offering inks, equipment, and materials.
A listing of ink manufacturers based in the United States.
Directory of ink producers across Europe.
Detailed insights into products, processes, and innovations from leading ink companies.
Find definitions for common terms used throughout the ink and printing industries.
Comprehensive digital guides on specific ink technologies and markets.
Research-driven reports offering analysis and solutions to industry challenges.
Marketing materials from suppliers showcasing products and services.
Company-sponsored articles offering expert insight, case studies, and product highlights.
Company announcements, product launches, and corporate updates.
Browse job openings in the ink and coatings industries and connect with potential employers.
Calendar of major trade shows and professional gatherings.
On-site event coverage and updates.
Virtual sessions led by industry experts.
What are you searching for?
By Anders Törneholm
Visible light can be used to create electrodes from conductive plastics completely without hazardous chemicals. This is shown in a new study carried out by researchers at Linköping and Lund universities. The electrodes can be created on different types of surfaces, which opens up for a new type of electronics and medical sensors.
“I think this is something of a breakthrough. It’s another way of creating electronics that is simpler and doesn’t require any expensive equipment,” says Xenofon Strakosas, assistant professor at the Laboratory of Organic Electronics, LOE, at Linköping University.
Polymers consist of long chains of hydrocarbons. Each link in the chain is called a monomer. When the monomers are connected, polymers are formed. The process, called polymerisation, is often carried out using strong and sometimes toxic chemicals, which limits the ability to scale up the process and use the technology in e.g. medicine.
The Campus Norrköping researchers, together with colleagues in Lund and New Jersey, have now succeeded in creating a method where polymerisation can happen using visible light only. This is possible due to specially designed water-soluble monomers developed by the researchers. Thus, no toxic chemicals, harmful UV light or subsequent processes are needed to create the electrodes.
“It’s possible to create electrodes on different surfaces such as glass, textiles and even skin. This opens up a much wider range of applications,” says Strakosas.
In practice, the solution containing the monomers could be placed on a substrate. Using, for example, a laser or other light source, it is possible to create electrodes in intricate patterns directly on the surface. The solution that is not polymerised can then be rinsed away and the electrodes remain.
“The electrical properties of the material are at the very forefront. As the material can transport both electrons and ions, it can communicate with the body in a natural way, and its gentle chemistry ensures that tissue tolerates it – a combination that is crucial for medical applications,” says Tobias Abrahamsson, researcher at LOE and lead author of the article published in the scientific journal Angewandte Chemie.
The researchers have tested the technology by photo-patterning electrodes directly onto the skin of anaesthetised mice. The results show a clear improvement in the recording of low-frequency brain activity compared to traditional metal EEG electrodes.
“As the method works on many different surfaces, you can also imagine sensors built into garments. In addition, the method could be used for large-scale manufacture of organic electronics circuits, without dangerous solvents,” says Abrahamsson.
The research was funded mainly by the European Research Council, the Swedish Research Council, the Swedish Foundation for Strategic Research, the Knut and Alice Wallenberg Foundation, the Stig Wadström Foundation, the Åke Wiberg Foundation and via the Swedish Government’s Strategic Research Area in Advanced Functional Materials (AFM) at Linköping University.
Article: Visible-Light-Driven Aqueous Polymerization Enables in Situ Formation of Biocompatible, High-Performance Organic Mixed Conductors for Bioelectronics, Tobias Abrahamsson, Fredrik Ek, Rémy Cornuéjols, Donghak Byun, Marios Savvakis, Cecilia Bruschi, Ihor Sahalianov, Eva Miglbauer, Chiara Musumeci, Mary J. Donahue, Ioannis Petsagkourakis, Maciej Gryszel, Martin Hjort, Jennifer Y. Gerasimov, Glib Baryshnikov, Renee Kroon, Daniel T. Simon, Magnus Berggren, Ilke Uguz, Roger Olsson, Xenofon Strakosas, Angewandte Chemie, published online 10 November 2025. DOI: 10.1002/ange.202517897
Enter the destination URL
Or link to existing content
Enter your account email.
A verification code was sent to your email, Enter the 6-digit code sent to your mail.
Didn't get the code? Check your spam folder or resend code
Set a new password for signing in and accessing your data.
Your Password has been Updated !